ASCE Australia Section Master Class

Sponsored by

AUSTRALIA SECTION

Principles of Streambank Analysis and Application of the Bank Stability and Toe-Erosion Model (BSTEM)

Presented by Dr Andrew Simon

Dr Andrew Simon is a geomorphologist with more than 30 years of experience in mechanistic analysis of unstable-channel systems, streambank erosion, cohesive-sediment entrainment, the role of riparian vegetation, "reference" sediment-transport rates, and river restoration, working on projects throughout the United States and around the globe. He is also the senior developer of the Bank-Stability and Toe-Erosion Model (BSTEM), which has become the industry standard for evaluating bank erosion and the effectiveness of alternative mitigation strategies

Dr Simon is an internationally recognized scientist and project manager, designing field, laboratory and numerical-modeling studies, leading and participating in field data collection, analyzing and synthesizing data, and preparing technical reports. He is the author of more than 100 technical publications and the editor of several books.

Dr Simon has designed, conducted, and managed projects focusing on the adjustment and evolution of channel systems, development of a mechanistic bank-stability model for stream restoration, sources and magnitudes of sediment delivery, quantifying potential sediment-load reductions according to restoration strategy, and determining "background" rates of sediment transport for developing water-quality targets. He was the project chief and lead scientist on numerous quantified historical/existing projects that sediment-transport rates and channel erosion, and the effects of restoration strategies on reducing erosion and sediment-loads.

Dr Simon is heavily engaged in geomorphic studies in NSW, Queensland and New Zealand focusing on several critical issues such as sediment delivery to receiving waters, flood recovery along rivers in the wake of floods, and cost-effective gully and bank-erosion control in catchments.

Date

Monday 25 May 2015

Location

Cardno Training Room Level 11, Green Square North Tower, 515 St Pauls Terrace, Fortitude Valley QLD 4006

Program

See over for the program

Cost

\$350 per attendee (inclusive of GST)

Registration

Please complete, scan and email to Carolyn Genn: Carolyn.Genn@cardno.com.au Telephone (07) 3369 9822

Title:			
First Name:			
Surname:			
Organisation:			
Address:			
State:		Postcode):
Telephone:			
Email:			
Names of additional	attende	es:	
Payment Amount:			
Payment Method:	☐ Mast	ercard	□ Visa
Credit Card No			
Expiry Date (MM/YY)		
Name on Card			
Signaturo			

Principles of Streambank Analysis and application of the Bank Stability and Toe-Erosion Model (BSTEM)

AUSTRALIA SECTION

Program

0815 - 0830 hrs	Registration
0830 - 0930 hrs	Principles of Channel Adjustment Conceptual framework: Force and resistance in fluvial and geotechnical processes, thresholds, types of equilibrium, time scales, roles of vertical and lateral changes, channel evolution
0930 - 1030 hrs	Role of Streambank Erosion in Channel Adjustment and Sediment Yields Sediment contributions from streambanks, widening in channel adjustment, effect of boundary resistance on adjustment
1030 – 1045 hrs	Morning Tea
1045 – 1130 hrs	Mechanics of Streambank Erosion Bank stability processes, forces affecting shear strength, pore-water pressure effects, hydraulic erosion processes.
1130 – 1230 hrs	Integrating the Effects of Vegetation Hydraulic versus geotechnical effects, root reinforcement, hydrologic effects
1230 – 1300 hrs	Lunch
1300 – 1400 hrs	Introduction to the Bank-Stability & Toe-Erosion Model (BSTEM) Model development, Model structure, Input requirements, Applications, and Appropriate interpretation of results
1400 – 1500 hrs	Case Study Application: Approach to Stable Bank Design Hydraulic issues, geotechnical issues, role of riparian vegetation
1500 – 1530 hrs	Afternoon Tea
1530 – 1630 hrs	Case Study Application: Quantifying Erosion Reduction from Streambanks Unit loading rates, extrapolation to longer reaches, comparison to mitigated conditions, importance of toe protection
1630 – 1645 hrs	Concluding Remarks